The Influence of Extracellular Superoxide on Iron Redox Chemistry and Bioavailability to Aquatic Microorganisms
نویسنده
چکیده
Superoxide, the one-electron reduced form of dioxygen, is produced in the extracellular milieu of aquatic microbes through a range of abiotic chemical processes and also by microbes themselves. Due to its ability to promote both oxidative and reductive reactions, superoxide may have a profound impact on the redox state of iron, potentially influencing iron solubility, complex speciation, and bioavailability. The interplay between iron, superoxide, and oxygen may also produce a cascade of other highly reactive transients in oxygenated natural waters. For microbes, the overall effect of reactions between superoxide and iron may be deleterious or beneficial, depending on the organism and its chemical environment. Here I critically discuss recent advances in understanding: (i) sources of extracellular superoxide in natural waters, with a particular emphasis on microbial generation; (ii) the chemistry of reactions between superoxide and iron; and (iii) the influence of these processes on iron bioavailability and microbial iron nutrition.
منابع مشابه
The Influence of Reactive Oxygen Species on Local Redox Conditions in Oxygenated Natural Waters
Redox conditions in natural waters are a fundamental control on biogeochemical processes and ultimately many ecosystem functions. While the dioxygen/water redox couple controls redox thermodynamics in oxygenated aquatic environments on geological timescales, it is kinetically inert in the extracellular environment on the much shorter timescales on which many biogeochemical processes occur. Inst...
متن کاملDisassembling Iron Availability to Phytoplankton
The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailabili...
متن کاملMn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction.
Manganese (Mn) oxides are among the most reactive minerals within the environment, where they control the bioavailability of carbon, nutrients, and numerous metals. Although the ability of microorganisms to oxidize Mn(II) to Mn(III/IV) oxides is scattered throughout the bacterial and fungal domains of life, the mechanism and physiological basis for Mn(II) oxidation remains an enigma. Here, we u...
متن کاملEffect of various levels of iron on morphological, biochemical, and physiological properties of Glycine max var. Pershing. Somayeh Pooladvand1, Mahlagha Ghorbanli 2* and Mozhgan Farzami Sepehr 3
Iron is a necessary mineral for plants' biological redox system and an important component of many enzymes. In the present study, effect of iron on morphological, biochemical, and physiological properties of soybeanwere investigated. The experiments were arranged in a completely randomized design with three replicates. Analysis of the data was carried out using SPSS with multiple range Duncan t...
متن کاملGold, Silver and Iron in Iron Oxy-hydroxide Precipitate Formed in Process of Acid Mine Drainage
Oxidation of sulfide-containing ores is the main cause of Acid Mine Drainage (AMD), which is an environmental problem associated with both the abandoned and active mines. Iron-bearing sulfide minerals can be oxidized and form mine waters with high sulfate content, low pH, high electrical conductivity, high redox potential, and high concentrations of iron, aluminum, and other heavy metals. In th...
متن کامل